Activity and research directory projects

The directory lists antimicrobial resistance (AMR) activities and research and displays whether they are in progress or completed. Use the filters and search to help refine your query.

13 activities or research projects found
  • 15 April 2020
    Ausgem is using genomic sequencing to characterise Escherichia coli that cause urinary tract infections and sepsis in Australian hospitals. Our studies are focussing on the carriage of mobile antimicrobial resistance (AMR) genes and virulence genes in these cohorts and comparing these elements with those circulating in food production systems and from environmental and wildlife sources enabling policy makers to make informed regulatory choices regarding antimicrobials and biosecurity.
    AusGEM (Partnership between University of Technology and NSW Department of Primary Industries).
  • 2 August 2019
    The two main objectives of this project is: 1) to engineer micro- and nano-surfaces with enhanced anti-microbial properties and 2) to develop novel technologies to include such functional micro and nano-surfaces on "real-life" objects, overcoming the limitation of micro and nanotechnologies to small areas and flat surfaces.
    Monash University
  • 1 July 2019
    This project aims to employ novel approaches to discover new-generation polymyxin antibiotics targeting the deadly Gram-negative ‘superbugs’. Novel lead molecules have been licensed to Qpex Biopharma (US) for IND-enabling evaluations with a Phase-I study aimed at 2020.
    Monash University and I (Jian Li, Professor, PhD) am the principal investigator. My project is currently funded by the American National Institutes of Health (NIH). More information at https://www.monash.edu/discovery-institute/news-and-events/news/2019-articles/us-biopharmaceutical-company-licenses-monash-university-superbug-drug-discovery
  • 29 June 2019
    Glycopeptide antibiotics – which include vancomycin – are last-resort antibiotics used in the clinic to treat serious Gram-positive bacterial infections. In this project, my team are utilising a novel chemo-enzymatic formation route that we have pioneered to generate and explore the properties of new vancomycin derivatives. This will allow us to explore the structure/ function relationships of these crucial antibiotics and to overcome growing bacterial resistance against these compounds.
    Monash University
  • 29 June 2019
    In this project, my team is developing a new approach to tackling antimicrobial resistance that exploits alternate mechanisms to overcome bacterial infections through augmentation of host immune responses and removal of bacterial evasion mechanisms. Our simultaneous “drug-immune” therapies will provide highly synergistic bacterial killing utilising existing antibiotic therapeutics, thus underlining the feasibility of future clinical application of such approaches.
    Monash University
  • 27 June 2019
    We are working with clinicians in the Center for Innovative Phage Applications and Therapeutics at the University of California in San Diego. Phage therapy is frontier medicine, and has FDA approval for use in hospitals in the USA. Isolating clinically-effective "cocktails" is a challenge that can only be met by collaboration between research scientists trained in phage biology (Monash) and clinicians with experience in clinical deployment (UCSD).
    Monash University.
    University of California in San Diego.
  • 27 June 2019
    We have engaged with partners in Wenzhou, China to analyze the recent rise in AMR in their hospitals. In 2019, we opened the Monash BDI-WMU Alliance in Clinical and Experimental Biomedicine on the campus of Wenzhou Medical University. Initial assessments of one species of bacteria reveals that 15 years ago, less than ten patients per annum were infected, all of which responded to off the shelf antibiotics. Last year, 990 patients had infections s, with ~1 in 3 being AMR.
    Biomedicine Discovery Institute, Monash University, Australia.
    Wenzhou Medical University, China.
  • 5 July 2018
    This project is an initiative of WARRA, the Wollongong Antimicrobial Resistance Research Alliance. This project aims to identify the trends in antimicrobial resistance over a 10 year period across the Illawarra Shoalhaven region for organisms including staphylococcus aureus, escherichia coli, klebsiella pneumonia, enterobacter spp, pneumococcus and haemophilus influenza. It further aims to determine the evolution of antimicrobial resistance in an individual over time.
    University of Wollongong, Illawarra Shoalhaven Local Health District, NSW Health Pathology, Southern IML
  • 5 July 2018
    This project is an initiative of WARRA, the Wollongong Antimicrobial Resistance Research Alliance. The project aims to examine the relationship between antimicrobial resistance and patient health care service utilisation rates and clinical outcomes across the Illawarra Shoalhaven region. It is hypothesized that antimicrobial resistance is associated with higher utilization of health care resources and with poorer outcomes.
    University of Wollongong, Illawarra Shoalhaven Local Health District, in collaboration with Centre for Health Research Illawarra Shoalhaven Population
  • 5 July 2018
    With regional, rural and metropolitan areas and a well-defined coastal strip with a relatively stable population base, the Illawarra Shoalhaven region provides an ideal population to position itself as the ‘Framingham’ of antimicrobial resistance. This large scale project specifically aims to build a longitudinal study across the Illawarra Shoalhaven region to determine all of the factors that are drivers of antimicrobial resistance and to provide a platform for test interventions.
    University of Wollongong, Illawarra Shoalhaven Local Health District

Pages